Sains Malaysiana 52(8)(2023): 2353-2375
http://doi.org/10.17576/jsm-2023-5208-14
Enhancing
Arsenate Removal Efficiency using Seawater Bittern-Derived MgO Nanoparticles/PVDF-HFP Electrospun Nanofibre
Composites
(Meningkatkan Kecekapan Penyingkiran Arsenat menggunakan Nanopartikel Air Laut Terbitan-Bittern MgO/Komposit Nanozarah Elektroputaran PVDF-HFP)
ASNAN RINOVIAN1,5,*,
MUHAMAD NASIR2, MUHAMMAD ALI ZULFIKAR3, SWASMI PURWAJANTI2,
NUGRAHA1,4, NURRAHMI HANDAYANI2,3, I GUSTI AGUNG
SURADHARMIKA6 & FITRI DARA2
1Master Program in Nanotechnology, Institut Teknologi Bandung,
40132, Bandung, Indonesia
2Research Center for Environmental and Clean Technology,
National Research and Innovation Agency (BRIN), 40135, Bandung, Indonesia
3Department of Chemistry, Institut Teknologi Bandung, 40132,
Bandung, Indonesia
4Department of Engineering Physics, Institut Teknologi
Bandung, 40132, Bandung, Indonesia
5Research Center for Mining Technology, National Research and
Innovation Agency (BRIN), 35361, Lampung, Indonesia
6Research Center for Advanced Materials, National Research and
Innovation Agency (BRIN), 15314, Banten, Indonesia
Received: 30 May
2023/Accepted: 13 July 2023
Abstract
MgO
nanoparticles (MgO NPs) incorporated PVDF-HFP nanofibers have been
synthesized using the electrospinning method to remove arsenic from polluted
water. MgO nanoparticles were synthesized from seawater bitterns and used as
magnesium precursors. The synthesized materials were characterized using
various techniques, and their adsorption capacities were evaluated against
arsenic under different conditions. The results showed that the maximum
adsorption for As(V) adsorption was 41.47 mg g-1 for PVDF-HFP/MgO
30% (w/w), which equals 179.69 mg g-1 based on the weight of bare
MgO NPs and achieved at pH 11, a contact time of 420 minutes, and an adsorbent
weight of 0.0125 g. Incorporating MgO NPs into the nanofiber matrix can enhance
its stability, further increase the adsorption capacity. This study
demonstrates the potential of using PVDF-HFP/MgO nanofiber composites to treat
arsenic-containing wastewater and further provide
commercial benefits for seawater bitterns by serving as a precursor for
producing functional nanomaterials.
Keywords: Arsenic removal; MgO nanoparticles; nanofiber
composites; PVDF-HFP nanofibers; seawater bittern
Abstrak
Nanozarah MgO (MgO NPs) yang tergabung PVDF-HFP nanozarah telah disintesis menggunakan kaedah pemintalan elektrik untuk mengeluarkan arsenik daripada air tercemar.Nanozarah MgO telah disintesis daripada bittern air laut dan digunakan sebagai prekursor magnesium. Bahan yang disintesis telah dicirikan menggunakan pelbagai teknik dan kapasiti penjerapannya dinilai terhadap arsenik di bawah keadaan yang berbeza.Hasil menunjukkan bahawa penjerapan maksimum bagi penjerapan As(V) ialah 41.47 mg g-1 untuk PVDF-HFP/MgO 30%
(w/w) yang bersamaan dengan 179.69 mg g-1 berdasarkan berat NP MgO kosong dan dicapai pada pH 11, masa sentuhan 420 minit dan berat penjerap 0.0125 g. Mencampurkan NP MgO ke dalam matriks nanozarah boleh meningkatkan kestabilannya, seterusnya meningkatkan kemampuan penjerapan. Kajian ini menunjukkan potensi penggunaan komposit nanozarah PVDF-HFP/MgO untuk merawat air sisa yang mengandungi arsenik dan seterusnya memberikan faedah komersial untuk bittern air laut dengan berfungsi sebagai pendahulu untuk menghasilkan bahan nano berfungsi.
Kata kunci:
Bittern air laut; komposit nanozarah; nanopartikel MgO; penyingkiran arsenik; PVDF-HFP nanozarah
REFERENCES
Amaro-Gahete,
J., Benítez, A., Otero, R., Esquivel, D., Jiménez-Sanchidrián, C., Morales, J., Caballero, Á. & Romero-Salguero, F.J. 2019. A comparative study of particle size
distribution of graphene nanosheets synthesized by an
ultrasound-assisted method. Nanomaterials 9(2): 152. https://doi.org/10.3390/nano9020152
Anam Ansari, Abad Ali, Mohd Asif & Shamsuzzaman.
2018. Microwave-assisted MgO NP catalyzed one-pot
multicomponent synthesis of polysubstituted steroidal
pyridines. New Journal of Chemistry 42(1): 184-197. https://doi.org/10.1039/c7nj03742b
Apriani, Mirna, Wahyono Hadi & Ali Masduqi. 2018.
Physicochemical properties of sea water and bittern in Indonesia: Quality
improvement and potential resources utilization for marine environmental
sustainability. Journal of Ecological Engineering 19(3): 1-10.
https://doi.org/10.12911/22998993/86150
Araujo, P.T., Terrones,
M. & Dresselhaus, M.S. 2012. Defects and
impurities in graphene-like materials. Materials Today 15(3): 98-109.
Arshid Bashir, Lateef Ahmad Malik, Sozia Ahad,
Taniya Manzoor, Mudasir Ahmad Bhat, G.N. Dar & Altaf Hussain Pandith. 2019. Removal of heavy metal ions from aqueous
system by ion-exchange and biosorption methods. Environmental
Chemistry Letters Springer. https://doi.org/10.1007/s10311-018-00828-y
Babaee,
Y., Mulligan, C.N. & Rahaman, M.S. 2018. Removal
of arsenic (III) and arsenic (V) from aqueous solutions through adsorption by
Fe/Cu nanoparticles. Journal of Chemical Technology and Biotechnology 93(1): 63-71. https://doi.org/10.1002/jctb.5320
Che Othman, F.E., Yusof, N., Jaafar,
J., Ismail, A.F., Hasbullah, H., Abdullah, N. &
Ismail, M.S. 2016. Preparation and characterization of polyacrylonitrile/manganese
dioxides- based carbon nanofibers via electrospinning process. In IOP
Conference Series: Earth and Environmental Science. 36: 012006.
https://doi.org/10.1088/1755-1315/36/1/012006
Cheng, H., Hu, Y., Luo, J., Xu, B.
& Zhao, J. 2009. Geochemical processes controlling fate and transport of
arsenic in acid mine drainage (AMD) and natural systems. Journal of Hazardous
Materials 165(1-3): 13-26. https://doi.org/10.1016/j.jhazmat.2008.10.070
Cheng, W., Zhang, W., Hu, L., Ding,
W., Wu, F. & Li, J. 2016. Etching synthesis of iron oxide nanoparticles for
adsorption of arsenic from water. RSC Advances 6(19): 15900-15910. https://doi.org/10.1039/c5ra26143k
Cruz, G.J.F., Mondal,
D., Rimaycuna, J., Soukup,
K., Gómez, M.M., Solis, J.L. & Lang, J. 2020. Agrowaste derived biochars impregnated with ZnO for removal of arsenic and lead in water. Journal of Environmental Chemical
Engineering 8(3). https://doi.org/10.1016/j.jece.2020.103800
D. Perez, J.V., Nadres,
E.T., Nguyen, H.N., P. Dalida, M.L. & Rodrigues,
D.F. 2017. Response surface methodology as a powerful tool to optimize the
synthesis of polymer-based graphene oxide nanocomposites for simultaneous
removal of cationic and anionic heavy metal contaminants. RSC Advances 7(30): 18480-18490. https://doi.org/10.1039/c7ra00750g
Davies, P.A. & Knowles, P.R.
2006. Seawater bitterns as a source of liquid desiccant for use in solar-cooled
greenhouses. Desalination 196(1-3): 266-279.
https://doi.org/10.1016/j.desal.2006.03.010
De Gisi,
S., Lofrano, G., Grassi, M.
& Notarnicola, M. 2016. Characteristics and
adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustainable
Materials and Technologies 9: 10-40.
https://doi.org/10.1016/j.susmat.2016.06.002
Delavar,
M., Bakeri, Gh., Hosseini,
M. & Nabian, N. 2021. Synthesis and application
of titania nanotubes and hydrous manganese oxide in
heavy metal removal from aqueous solution: Characterization, comparative study,
and adsorption kinetics. Theoretical Foundations of Chemical Engineering 55(1): 180-197. https://doi.org/10.1134/S004057952101005X
Dong, J., Xu, F., Dong, Z., Zhao,
Y., Yan, Y., Jin, H. & Li, Y. 2018. Fabrication
of two dual-functionalized covalent organic polymers through heterostructural mixed linkers and their use as cationic
dye adsorbents. RSC Advances 8(34): 19075-19084.
https://doi.org/10.1039/c8ra01968a
Fiol,
N. & Villaescusa, I. 2009. Determination of
sorbent point zero charge: Usefulness in sorption studies. Environmental
Chemistry Letters 7(1): 79-84. https://doi.org/10.1007/s10311-008-0139-0
Fiyadh,
S.S., AlSaadi, M.A., Jaafar,
W.Z., AlOmar, M.K., Fayaed,
S.S., Mohd, N.S., Lai, S.H. & El-Shafie, A. 2019. Review on heavy metal adsorption processes
by carbon nanotubes. Journal of Cleaner Production 230: 783-793.
https://doi.org/10.1016/j.jclepro.2019.05.154
Gopakumar,
D.A., Pasquini, D., Henrique, M.A., De Morais, L.C., Grohens, Y. &
Thomas, S. 2017. Meldrum’s acid modified cellulose nanofiber-based polyvinylidene fluoride microfiltration membrane for dye
water treatment and nanoparticle removal. ACS Sustainable Chemistry and
Engineering 5(2): 2026-2033. https://doi.org/10.1021/acssuschemeng.6b02952
Guo,
J., Yan, C., Luo, Z., Fang, H., Hu, S. & Cao, Y. 2019. Synthesis of a novel
ternary HA/Fe-Mn oxides-loaded biochar composite and its application in cadmium(II) and arsenic(V) adsorption. Journal
of Environmental Sciences (China) 85: 168-176.
https://doi.org/10.1016/j.jes.2019.06.004
Guo,
Q., Li, Y., Wei, X.Y., Zheng, L.W., Li, Z.Q., Zhang, K.G. & Yuan, C.G. 2021. Electrospun metal-organic frameworks hybrid nanofiber
membrane for efficient removal of As(III) and As(V)
from water. Ecotoxicology and Environmental Safety 228: 112990.
https://doi.org/10.1016/j.ecoenv.2021.112990
Guo,
L., Lei, R., Zhang, T.C., Du, D. & Zhan, W. 2022. Insight into the role and
mechanism of polysaccharide in polymorphous magnesium oxide nanoparticle
synthesis for arsenate removal. Chemosphere 296: 133878.
https://doi.org/10.1016/j.chemosphere.2022.133878
Gupta, K., Joshi, P., Gusain, R. & Khatri, O.P. 2021. Recent advances in
adsorptive removal of heavy metal and metalloid ions by metal oxide-based
nanomaterials. Coordination Chemistry Reviews 445: 214100.
https://doi.org/10.1016/j.ccr.2021.214100
Gupta, R., Kumar, R., Sharma, A.
& Verma, N. 2015. Novel Cu-carbon nanofiber
composites for the counter electrodes of dye-sensitized solar cells. International
Journal of Energy Research 39(5): 668-680. https://doi.org/10.1002/er.3279
He, Q., Li, X. & Ren, Y. 2022.
Analysis of the simultaneous adsorption mechanism of ammonium and phosphate on
magnesium-modified biochar and the slow release
effect of fertiliser. Biochar 4: 25. https://doi.org/10.1007/s42773-022-00150-5
Huling,
J., Götz, A., Grabow, N.
& Illner, S. 2022. GIFT: An ImageJ macro for automated fiber diameter quantification. PLoS ONE 17(10): e0275528. https://doi.org/10.1371/journal.pone.0275528
Ibrahim, H.M. & Klingner, A. 2020. A review on electrospun polymeric nanofibers: Production parameters and potential applications. Polymer
Testing 90: 106647. https://doi.org/10.1016/j.polymertesting.2020.106647
Jabar,
J.M., Odusote, Y.A., Alabi,
K.A. & Ahmed, I.B. 2020. Kinetics and mechanisms of congo-red
dye removal from aqueous solution using activated Moringa oleifera seed coat as adsorbent. Applied Water
Science 10: 136. https://doi.org/10.1007/s13201-020-01221-3
Kumar, M., Nandi, M. & Pakshirajan, K. 2021. Recent advances in heavy metal
recovery from wastewater by biogenic sulfide precipitation. Journal of Environmental
Management 278 (Part 2): 111555.
https://doi.org/10.1016/j.jenvman.2020.111555
Kwok, K.C.M., Koong,
L.F., Al Ansari, T. & McKay, G. 2018. Adsorption/desorption of arsenite and arsenate on chitosan and nanochitosan. Environmental Science and Pollution Research 25(15): 14734-14742.
https://doi.org/10.1007/s11356-018-1501-9
Kwok, K.C.M., Koong,
L.F., Al Ansari, T. & McKay, G. 2018. Adsorption/desorption of arsenite and arsenate on chitosan and nanochitosan. Environmental Science and Pollution Research 25(15): 14734-14742.
https://doi.org/10.1007/s11356-018-1501-9
Laili, Zalina, Muhamad Samudi Yasir, Muhamat Omar, Mohd Zaidi Ibrahim, and Esther Philip. 2010. Influence of humic acids on radium adsorption by coir pith in aqueous
solution. Sains Malaysiana 39(1): 99-106.
Liao, J., Zhang, Y., He, X., Zhang,
L. & He, Z. 2021. The synthesis of a novel titanium oxide aerogel with
highly enhanced removal of uranium and evaluation of the adsorption mechanism. Dalton
Transactions 50(10): 3616-3628. https://doi.org/10.1039/d0dt04320f
Lim, J., Kim, D.J., Cho, H. &
Kim, J. 2022. Design of novel seawater bittern recovery process for CO2 and SOx utilization. Desalination 540.
https://doi.org/10.1016/j.desal.2022.115995
Lin, S., Tang, J., Zhang, W., Zhang,
K., Chen, Y., Gao, R., Yin, H., Yu, X. & Qin, L.C. 2022. Facile preparation
of flexible binder-free graphene electrodes for high-performance supercapacitors. RSC Advances 12(20): 12590-12599.
https://doi.org/10.1039/d2ra01658c
Luo, J., Meng,
X., Crittenden, J., Qu, J., Hu, C., Liu, H. & Peng, P. 2018. Arsenic
adsorption on Α-MnO2 nanofibers and the significance of (1 0 0)
facet as compared with (1 1 0). Chemical Engineering Journal 331:
492-500. https://doi.org/10.1016/j.cej.2017.08.123
Luo, X. & Deng, F. 2019. Nanomaterials
for the Removal of Pollutants and Resource Reutilization. Elsevier.
Manuel Stephan, A. & Nahm, K.S. 2006. Review on composite polymer electrolytes
for lithium batteries. Polymer 47(16): 5952-5964.
https://doi.org/10.1016/j.polymer.2006.05.069
Mao, Y., Liu, K., Zhan, C., Geng, L., Chu, B. & Hsiao, B.S. 2017. Characterization
of nanocellulose using small-angle neutron, X-ray,
and dynamic light scattering techniques. Journal of Physical Chemistry B 121(6): 1340-1351. https://doi.org/10.1021/acs.jpcb.6b11425
Meena,
M., Sonigra, P. & Yadav, G. 2021.
Biological-based methods for the removal of volatile organic compounds (VOCs)
and heavy metals. Environmental Science and Pollution Research 28(3):
2485-2508. https://doi.org/10.1007/s11356-020-11112-4
Mohammadian,
S., Krok, B., Fritzsche,
A., Bianco, C., Tosco, T., Cagigal, E., Mata, B.,
Gonzalez, V., Diez-Ortiz, M., Ramos, V., Montalvo,
D., Smolders, E., Sethi, R. & Meckenstock, R.U.
2021. Field-scale demonstration of in situ immobilization of heavy
metals by injecting iron oxide nanoparticle adsorption barriers in groundwater. Journal of Contaminant Hydrology 237: 103741.
https://doi.org/10.1016/j.jconhyd.2020.103741
Nandiyanto, Asep Bayu Dani, Risti Ragadhita & Jumril Yunas. 2020. Adsorption
isotherm of densed monoclinic tungsten trioxide
nanoparticles. Sains Malaysiana 49(12): 2881-2890. https://doi.org/10.17576/jsm-2020-4912-01
Ng, J. (Jack), A. Gomez-Caminero, Inter-Organization Programme for the Sound Management of Chemicals, and International Program on Chemical
Safety. 2001. Arsenic and Arsenic Compounds. World Health Organization.
Noor Halini Baharim, Fridelina Sjahrir, Rahmad Mohd Taib, Norazlina Idris & Tuan Azmar Tuan Daud.
2023. Methylene blue adsorption by acid post-treated low temperature biochar derived from banana (Musa acuminata)
pseudo stem. Sains Malaysiana 52(2): 547-561. https://doi.org/10.17576/jsm-2023-5202-17
Peydayesh,
M., Suta, T., Usuelli, M., Handschin, S., Canelli, G., Bagnani, M. & Mezzenga, R.
2021. Sustainable removal of microplastics and
natural organic matter from water by coagulation-flocculation with protein
amyloid fibrils. Environmental Science and Technology 55(13): 8848-8858.
https://doi.org/10.1021/acs.est.1c01918
Pi, H., Wang, R., Ren, B., Zhang, X.
& Wu, J. 2018. Facile fabrication of multi-structured SiO2@PVDF-HFP nanofibrous membranes for enhanced copper ions
adsorption. Polymers 10(12): 1385. https://doi.org/10.3390/polym10121385
Pramanik,
S., Sahu, S.K., Meshram, P.
& Pandey, B.D. 2014. Arsenic removal from spent liquor generated during
processing of vanadium sludge. Advanced Materials Research 828: 55-63.
https://doi.org/10.4028/www.scientific.net/AMR.828.55
Puguan,
J.M.C., Chung, W.J. & Kim, H. 2016. Synthesis and characterization of electrospun PVdF-HFP/Silane-functionalized ZrO2 hybrid nanofiber
electrolyte with enhanced optical and electrochemical properties. Solid
State Sciences 62: 34-42. https://doi.org/10.1016/j.solidstatesciences.2016.10.010
Rahman, H.L., Erdem,
H., Sahin, M. & Erdem,
M. 2020. Iron-incorporated activated carbon synthesis from biomass mixture for
enhanced arsenic adsorption. Water, Air, and Soil Pollution 231: 6.
https://doi.org/10.1007/s11270-019-4378-4
Ramlah Abd Rashid, Ali H. Jawad, Mohd Azlan Bin Mohd Ishak & Nur Nasulhah Kasim.
2018. FeCl3-activated carbon developed from coconut leaves:
Characterization and application for methylene blue removal. Sains Malaysiana 47(3): 603-610. https://doi.org/10.17576/jsm-2018-4703-22
Saif,
S., Tahir, A., Asim, T., Chen, Y. & Adil, S.F. 2019. Polymeric nanocomposites of iron-oxide
nanoparticles (IONPs) synthesized using Terminalia chebula leaf extract for enhanced adsorption of arsenic(v) from water. Colloids and
Interfaces 3(1): 17. https://doi.org/10.3390/colloids3010017
Saod,
W.M., Oliver, I.W., Thompson, D.F., Holborn, S., Contini, A. & Zholobenko, V.
2023. Magnesium oxide loaded mesoporous silica: Synthesis, characterisation and use in removing lead and cadmium from water supplies. Environmental
Nanotechnology, Monitoring and Management 20: 100817.
https://doi.org/10.1016/j.enmm.2023.100817
Schroeder, A.B., Dobson, E.T.A., Rueden, C.T., Tomancak, P., Jug,
F. & Eliceiri, K.W. 2021. The ImageJ ecosystem: Open-source software for image visualization, processing, and
analysis. Protein Science 30(1): 234-249.
https://doi.org/10.1002/pro.3993
Shafiq,
M., Alazba, A.A. & Amin, M.T. 2018. Removal of
heavy metals from wastewater using date palm as a biosorbent:
A comparative review. Sains Malaysiana 47(1): 35-49.
https://doi.org/10.17576/jsm-2018-4701-05
Shi, H., Chen, F., Fu, L., Zhao, S.,
Zhang, W., Chen, F. & Shi, Q. 2021. Preparation of nano-iron
loaded cassava fibre composite material for
hexavalent chromium removal. Sains Malaysiana 50(11): 3373-3382.
https://doi.org/10.17576/jsm-2021-5011-21
Singh, K.P., Gupta, S., Singh, A.K.
& Sinha, S. 2011. Optimizing adsorption of crystal violet dye from water by
magnetic nanocomposite using response surface modeling approach. Journal of
Hazardous Materials 186(2-3): 1462-1473.
https://doi.org/10.1016/j.jhazmat.2010.12.032
Sinha Ray, S., Lee, H.K., Huyen, D.T.T., Park, Y.I., Park, H., Nam, S.E., Kim, I.C.
& Kwon, Y.N. 2021. Fluorine-free anti-droplet surface modification by hexadecyltrimethoxysilane-modified silica
nanoparticles-coated carbon nanofibers for self-cleaning applications. Progress
in Organic Coatings 153: 106165.
https://doi.org/10.1016/j.porgcoat.2021.106165
Siti Zu Nurain Ahmad, Wan Norharyati Wan Salleh, Norhaniza Yusof, Mohd Zamri Mohd Yusop, Rafidah Hamdan, Nor Asikin Awang, Nor Hafiza Ismail, Norafiqah Rosman, Norazlianie Sazali & Ahmad Fauzi Ismail.
2021. Pb(II) removal and its adsorption from aqueous
solution using zinc oxide/graphene oxide composite. Chemical Engineering
Communications 208(5): 646-660.
https://doi.org/10.1080/00986445.2020.1715957
Su, Y., Burger, C., Hsiao, B.S.
& Chu, B. 2014. Characterization of TEMPO-Oxidized cellulose nanofibers in
aqueous suspension by small-angle x-ray scattering. Journal of Applied
Crystallography 47(2): 788-798. https://doi.org/10.1107/S1600576714005020
Tibolla,
H., Pelissari, F.M. & Menegalli,
F.C. 2014. Cellulose nanofibers produced from banana peel by chemical and
enzymatic treatment. LWT 59(2P2): 1311-1318.
https://doi.org/10.1016/j.lwt.2014.04.011
Torasso,
N., Vergara-Rubio, A., Rivas-Rojas, P., Huck-Iriart,
C., Larrañaga, A., Fernández-Cirelli,
A., Cerveny, S. & Goyanes,
S. 2021. Enhancing arsenic adsorption via excellent dispersion of iron oxide
nanoparticles inside poly(vinyl alcohol) nanofibers. Journal
of Environmental Chemical Engineering 9(1): 104664.
https://doi.org/10.1016/j.jece.2020.104664
Tripathy,
M. & Hota, G. 2020. Maghemite and graphene oxide embedded polyacrylonitrile electrospun nanofiber matrix for remediation of arsenate
ions. ACS Applied Polymer Materials 2(2): 604-617.
https://doi.org/10.1021/acsapm.9b00982
Unuabonah,
E.I., Omorogie, M.O. & Oladoja,
N.A. 2018. Modeling in adsorption: Fundamentals and applications. In Composite Nanoadsorbents, edited by Kyzas,
G.Z. & Mitropoulus, A.C. Elsevier. pp. 85-118.
https://doi.org/10.1016/B978-0-12-814132-8.00005-8
Veerabhadraiah,
A., Ramakrishna, S., Angadi, G., Venkatram,
M., Ananthapadmanabha, V.K., NarayanaRao,
N.M.H. & Munishamaiah, K. 2017. Development of
polyvinyl acetate thin films by electrospinning for sensor applications. Applied
Nanoscience (Switzerland) 7(7): 355-363.
https://doi.org/10.1007/s13204-017-0576-9
Vo, D.T., Do, H.N., Nguyen, T.T.,
Nguyen, T.T.H., Tran, V.M., Okada, S. & Le, M.L.P. 2019. Sodium ion
conducting gel polymer electrolyte using poly(vinylidene fluoride hexafluoropropylene). Materials Science and Engineering B: Solid-State Materials for Advanced
Technology 241: 27-35. https://doi.org/10.1016/j.mseb.2019.02.007
Wang, Z., Sun, B., Lu, X., Wang, C.
& Su, Z. 2019. Molecular orientation in individual electrospun nanofibers studied by polarized AFM-IR. Macromolecules 52(24):
9639-9645. https://doi.org/10.1021/acs.macromol.9b01778
Xie,
X., Lu, C., Xu, R., Yang, X., Yan, L. & Su, C. 2022. Arsenic removal by
manganese-doped mesoporous iron oxides from groundwater: Performance and
mechanism. Science of the Total Environment 806(Part 2): 150615.
https://doi.org/10.1016/j.scitotenv.2021.150615
Xiong,
C., Wang, W., Tan, F., Luo, F., Chen, J. & Qiao,
X. 2015. Investigation on the efficiency and mechanism of Cd(II) and Pb(II) removal from aqueous solutions using MgO nanoparticles. Journal of Hazardous Materials 299: 664-674. https://doi.org/10.1016/j.jhazmat.2015.08.008
Yalcinkaya,
F., Yalcinkaya, B. & Jirsak,
O. 2015. Dependent and independent parameters of needleless electrospinning. In Vlakna a Textil.
Slovak University of Technology in Bratislava. pp. 75-79.
https://doi.org/10.5772/65838
Yavari,
M., Ebadi, F., Meloni, S.,
Wang, Z.S., Yang, T.C.J., Sun, S., Schwartz, H.,Wang, Z., Niesen, B., Durantini, J., Rieder, P., Tvingstedt, K., Buonassisi, T.,
Choy, W.C.H., Filippetti, A., Dittrich,
T., Olthof, S., Correa-Baena, J-P. & Tress, W.
2019. How far does the defect tolerance of lead-halide perovskites range? The
example of Bi impurities introducing efficient recombination centers. Journal
of Materials Chemistry A 7(41): 23838-23853.
https://doi.org/10.1039/c9ta01744e
Zhang, C.L. & Yu, S.H. 2014.
Nanoparticles meet electrospinning: Recent advances and future prospects. Chemical
Society Reviews 43(13): 4423-4448. https://doi.org/10.1039/c3cs60426h
Zhang, C., Uchikoshi,
T., Ichinose, I. & Liu, L. 2019. Surface modification on cellulose
nanofibers by TiO2 coating for achieving high capture efficiency of
nanoparticles. Coatings 9(2): 139.
https://doi.org/10.3390/COATINGS9020139
Zhang, H., Hu, J., Xie, J., Wang, S. & Cao, Y. 2019. A solid-state
chemical method for synthesizing MgO nanoparticles
with superior adsorption properties. RSC Advances 9(4): 2011-2017.
https://doi.org/10.1039/C8RA09199D
Zhao, Y., Yuan, X., Li, X., Jiang,
L. & Wang, H. 2021. Burgeoning prospects of biochar and its composite in persulfate-advanced oxidation process. Journal of
Hazardous Materials 409: 124893. https://doi.org/10.1016/j.jhazmat.2020.124893
Zhu, Y., Zheng, L., Liu, W., Qin, L.
& Ngai, T. 2020. Poly(l-Lactic Acid)
(PLLA)/MgSO4·7H2O composite coating on magnesium substrates for corrosion
protection and cytocompatibility promotion. ACS
Applied Bio Materials 3(3): 1364-1373. https://doi.org/10.1021/acsabm.9b00983
*Corresponding
author; email: asna002@brin.go.id
|